CONVECTION IN CAVITIES OF VARIABLE
WALL TEMPERATURE

A. V. Lykov and B. M. Berkovskii UDC 536.25

Nonthreshold excitation of natural convection is predicted in a horizontal cavity whose upper
surface is heated in an arbitrarily nonuniform manner. From a conducting liquid in a mag-
netic field, it is shown that convection is not excited for an arbitrary nonuniform heating of
the upper surface. The results are valid in rheological systems.

In studies of heat and mass transfer in volumes occupied by liquids and gases, the conditions for the
appearance of convection are of considerable importance. Convective heat and mass transfer is known to
be considerably more intense than molecular transfer, so the appearance of convection in particular cases
may be either useful or undesirable, depending on whether the intention is to intensify or reduce the trans-
fer.

1. We can determine the conditions for the appearance of convection in channels and cavities with
arbitrary wall temperature. For this purpose, we will analyze the mechanical equilibrium equation vj = 0
and find the class of boundary conditions for which there are no solutions. The examples of channels and
cavities of planar geometry will be discussed. We assume that the gravitational force is the only mass
force acting and that the physical parameters of the medium are constant. Then the equations for mechanical
equilibrium are
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These equations should be supplemented with the equation of state. We at first assume, as is usually done
in a study of free convection, that in writing the equation of state we can neglect the pressure dependence
of the density and can linearize the temperature dependence of the density [1-3]. Then we find

p=p*[1—p(T—TM), (6)

where p* and T* are certain empirical constants, and 8= (—1/p)(8p/8T) is the coefficient of thermal ex~
pansion.

Let us consider the cavity to be a parallelepiped one of whose sides is parallel to the gravitational
force. The boundary and initial conditions for Eqs. (1)-(6) are

t=0: p= Po(x, Y, Z), T= To(xr Y, Z),

t>0: x=d P=Pyy, 2 8, T=Tyy, 2, ¥,
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x::-—"d T=T—d(y7 2, t),
y=h P=Py(x, 2, 8), T=T,(x, 2 1,

y=—h T =T, 2 ¥ (7)
z=1 P:Pl(x’ Y, t)’ T=Tl(x’ Y, t)’
z2=—1 T= T—l(xv Y, t)

We choose the y axis parallel to the gravitational force. Then gy =gy = 0 and gy = 0 and it follows from
Egs. (1)~(4) that the pressure does not change along the x and z directions, i.e., in the plane perpendicular
to the vector E Furthermore, the density should not be a function of the time p # p(t). It also follows from
Eq. (2) that the density is constant in the xz planes and thus depends only on the y coordinate: p = p{y). It
is assumed here that the gravitational field is constant in the xz planes, but that it may depend in an
arbitrary manner on the time and the y coordinate: gy = gy(y, t). It follows directly from this equation of
state that the temperature, like the density, may not depend on the time or the x and z coordinates, and
should be a function only of y: T = T(y).

Taking into account these limitations on the coordinate and time dependences of the temperature,
density, and pressure, we can easily find the general solution of Eqs. (1)-(6) and formulate the boundary
and initial conditions under which mechanical equilibrium is possible:

T=To=T,=T. =T, =T, =ay+b, (8)
Tp=ah+b, T, =—ah+0b, a= const, b= const, (9)
p=po=p*[1—Blay+b—T%)], (10)

14
P=Pf=%=f®+wﬁfgﬂ%ﬂﬂ*ﬁ@%+b—TWd% Py =7 (). (11)
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Mechanical equilibrium is thus possible only when: 1) the temperatures of the upper and lower surfaces
of the parallelepiped are held constant over the entire surface area and are not functions of the time [Eq.
(9)]; 2) the temperature of the side surfaces changes linearly and is also independent of the time [Eq.(8)];

3) the density is constant and has the height distribution given by Eq. (10); 4) the pressure at the upper and
lower surfaces of the parallelepiped has an arbitrary time dependence f(t), but the pressure is maintained

in a special manner at the side surfaces [Eq.(11)]. In the case of a varying gravitational field, the pressure
changes at the side surfaces of the parallelepiped correspond to the g = g(y, t) dependence.

When there are any deviations from these boundary and initial conditions, there are no solutions of
Eqgs. (1)-(6); accordingly there is no mechanical equilibrium of the liquid, so convection arises in the cavity.
Convection may arise in the cavity when either the temperature boundary conditions (8) and (9) or the pres-
sure boundary conditions are disrupted. We are interested primarily in convection excitation by means of
heating. We will discuss this question in detail.

Our particular interest is in the excitation of free convection in a cavity filled with a gas or a liquid
and whose upper surface is heated. As we just explained, it is sufficient here either to produce a non-
uniform temperature distribution over the upper surface or to give this temperature a time dependence.
Convection should arise when there are arbitrarily small deviations from a uniform temperature or from
a constant temperature. Experiments should be carried out to check this possibility of exciting free con-
vection by means of heating from above. This can apparently be done most easily by producing a stepped,
or approximately stepped, temperature distribution over the upper surface of the parallelepiped filled with
the liquid or gas:

. Tho —d < x<0
Th= {Tho+A T 0<x<£d, z t-—arbitrary

or

Tho 0<t, x, z— arbitrary,

T, =
B {TWMT t >0,

and by maintaining the lower surface at T_j = Thy. Although convection is predicted theoretically at arbi~-
trarily small AT, the possible existence of a critical value ATy should be noted during the experiments,
and the changes in the structure of the convective flow with changing AT should be followed.
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The possibility of exciting free convection in a strictly horizontal cavity by means of nonuniform heat-
ing from above should not be confused with free convection in a sloping channel whose upper wall is at a
higher temperature [3]. In this case, the convection, which, incidentally, is observed at a constant wall
temperature, is due to the noncollinearity of the sides of the channel with the gravitational vector; this con-
vection would not arise in a horizontal channel. Both possibilities for the appearance of convection make
a mechanical equilibrium in g cavity filled with a liquid or gas an exceptional phenomenon. Under actual
conditions, one must generally expect convection. Accordingly, the large discrepancies between the ex-
perimental thermal and other physical characteristics of liquids and gases obtained by various authors
[6-7, 11, 12] are understandable, and one recognizes the necessity for treating experimental results on the
basis of a heat conduction equation incorporating convective terms.

The considerable range of critical Rayleigh numbers [8-10] which have been observed experimentally
can also be attributed to the appearance of convection because the surfaces of the horizontal planar layers
are not isothermal.

Let us now see what changes are caused in these results by replacement of equation of state (6) by a
more accurate one. Let us consider, e.g., an ideal gas in which the equation of state is exactly

P = RpT.

1t is difficult to see that the steady-state results will be essentially the same. In particular, to excite con-
vection by heating from above, it is, as before, sufficient to heat the horizontal surfaces in a nonuniform
manner. The temperature distribution at the side surfaces remains the same, but the pressure and density
distributions are different:

- o aR —g(y) d :|
"_exp[ Ray+b6 ]
- b _[eR—g® d].
P=:(oy + )eXp[ Ry + b 7]

New results are found under transient conditions. For example, there is a mechanical equilibrium when
there is a certain agreement between the time dependences of the pressure, temperature, and gravitational
acceleration. It is not difficult to see that this is possible when T(t) ~ P(t) ~ g(t) ~ e®l. In this case, the
solution of the problem requires further study.

2. Let us determine the conditions for the appearance of convection in a cavity with nonisothermal
surfaces when this cavity is filled with a conducting liquid (or gas) and is placed in a magnetic field. We
assume the cavity to be a parallelepiped and assume that the only nonvanishing component of the magnetic
field is directed parallel to the gravitational acceleration, which is also parallel to one side of the paral-
lelepiped and y axis. As in the case of nonconducting liquids, we find a class of boundary conditions under
which solutions of the static equation do not exist — in this case, the equations of magnetohydrostatics. We
assume the magnetic field is uniform along the z axis; then the magnetohydrostatic equations become [4]

H,=H,=0, H,=H,(x 1,

0H, ¢ 0°H,
ot dno  0x°
o= 2 (p1 1),
0x 8n
2 4 (12)
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T a7+ — & <<2i)
ot 16n?cp* ¢, \ 0x
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where ¢ is the conductivity and c is the electrodynamic constant. We use the equation of state as given in
(6). The boundary and initial conditions (7) must be supplemented by conditions for the magnetic field com-
ponents:

t =0 H, = Hy (),
>0 x=1 Hy,=H,0,
x=—1 Hy':Hy(_l)(t).

Without going into a detailed analysis of system (12), we state the general solution and boundary con-
ditions for a mechanical equilibrivm:

Hy=Hp=Ax+B, H, = Al +B, Hy,,=—Al + B,
T=Ty=Ty=T;=T=T;=ap+ay+b,
Tph=ah+ah4-b6, T, =ah®—ah+b,

p=po=p*[I—f@y*+ay+b—TH,

Ax + By
P-:f(t)+§ oWy, ydy— LETB
8n
2
we A 4B 4 b—const.

32n*0p* cp
It was assumed for this solution that the gravitational field was constant in the xz planes.
Any deviation from these conditions should cause macroscopic motion.

As before, nonisothermal horizontal surfaces (upper or lower) cause convection. Macroscopic mo-
tion in the cavity is also excited when the magnetic field or temperature is other than constant in time. In-
terestingly, mechanical equilibrium cannot occur when the magnetic field has a nonlinear dependence on the
x coordinate.

Using the equation of state for an ideal gas, we find a completely different result, even for the steady-
state problem. In a magnetic field which varies linearly along the x axis, the horizontal surfaces may be
nonisothermal at mechanical equilibrium if the pressure along these surfaces changes in a specified man-
ner:

H = Ax + B.
T = [8n I1 (y) — (Ax + B)?] (8mp) L,
2
p=]](y)___(£7ij‘_§)_,
8n
S _dm 1
dy g’
*E o a*D
I =(Dy+E Ly— (22 4+ 22— 3l
Dy + ){K+ Y (&W{r Q)y Y y}

D, E, K, L = const.

The choice of equation of state, as we will see, plays an important role with respect to the conditions
for convection excitation; this choice will be discussed elsewhere in more detail.

We note in conclusion that these results regarding the excitation of free convection as a result of non-
isothermal surfaces can be converted without difficulty to excitation due to nonisobaric conditions; these
results hold for Newtonian liquids (or gases) and in rheological systems.
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